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Abstract

A model of the global gas market is presented which in its basic version optimises the future development
of production, transport and storage capacities as well as the actual gas flows around the world assuming
perfect competition. Besides the transport of natural gas via pipelines also the global market for liquefied
natural gas (LNG) is modeled using a hub-and-spoke approach. While in the basic version of the model
an inelastic demand and a piecewise-linear supply function are used, both can be changed easily, e.g. to a
Golombek style production function or a constant elasticity of substitution (CES) demand function. Due to
the usage of mixed complementary programming (MCP) the model additionally allows for the simulation of
strategic behaviour of different players in the gas market, e.g. the gas producers.
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1. Introduction

The global gas market has undergone significant changes in the last decade and future development is

highly uncertain as well. Gas market liberalisation in Europe, the rise of unconventional gas production in

the US and the increase in LNG trade worldwide were major drivers for the development of the global gas

market in recent years. The future trade relationships of gas exporting and importing countries might be

affected by the increase of Chinese gas demand, major investments in LNG and pipeline infrastructure or

the prospects of unconventional gas production just to mention a few possible influences.

Gas market models are helpful tools for simulating the complex interdependencies described above. The

Institute for Energy Economics at the University of Cologne (EWI) has developed linear simulation models

of European and global gas markets for many years to help decision makers in business and politics. These

models usually minimise short-term or long-term costs of gas supply (i.e. production, storage and transport

costs) subject to various constraints. Typical constraints are meeting inelastic, exogenous demand, achieving

a certain mix of supply (national diversification targets with respect to supply), or accounting for existing

long-term contracts.

The first EWI gas market model was EUGAS developed by Perner (2002). EUGAS is a long-term

intertemporal optimisation model to analyse future European gas supply. Thereby, the model includes data

of existing production and transport infrastructure and simulates investment decisions in future capacities as

well. The model is implemented as a linear mixed-integer model since the investment decision is represented

as a binary problem.
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In 2007, EWI developed the TIGER model [see Bothe and Lochner (2008) and Lochner (2011)] to analyse

interdependencies within the European natural gas infrastructure. The TIGER-model is a dispatch model

which optimizes the European gas supply under given infrastructure and demand assumptions. By minimis-

ing total costs of gas supply, the model enables an integrated evaluation of the infrastructure components,

i.e. pipelines, storages and terminals and their interaction. The model is used for the evaluation of new

investment projects and comprehensive analyses of physical market integration and security of supply.

The MAGELAN model by Seeliger (2006) extends the European gas market models to a global perspec-

tive in terms of geographical coverage. MAGELAN is a long-term gas supply model and optimises natural

gas supply including investments in production and infrastructure capacity on a yearly basis up to 2035.

It is an intertemporal and interregional cost-minimisation model. The model’s objective function includes

both capital and operating costs of global gas production and transport. Inefficiencies, which could arise

due to strategic behaviour of market players, are therefore not accounted for by the model.

The COLUMBUS model which we present here allows for analysing such strategic behaviour. Opposed to

MAGELAN, COLUMBUS has a monthly resolution and thus also endogenously calculates storage operation.

COLUMBUS is an intertemporal global gas market model based on mixed complementary programming

(MCP). The model uses a vertex/edge approach: the vertices represent production facilities (sources) or

demand regions (sinks). The vertices are connected via edges, which represent either pipelines or LNG

transport routes. Similar to e.g. Gabriel et al. (2005) or Egging et al. (2010) the model code is derived

using the maximisation problems of the different players (see section 2) in the global gas market like gas

producers, traders, regasifiers, etc. In its basic version, the model optimises the future development of

production, transport and storage capacities as well as the dispatch of gas flows around the world assuming

perfect competition. The model distinguishes physical gas flows from financial gas trades. Besides the

transport of natural gas via pipelines also the global market of liquefied natural gas (LNG) is modeled using

a hub-and-spoke approach. To reduce the model complexity, liquefaction and regasification terminals are

not connected point-by-point but via a network of virtual LNG hubs, which are connected to each other.

This approach reduces the number of LNG connections and therefore the number of variables by 60 %

compared to the point-by-point connection approach. In oder to account for the intertemporal decisions

of gas storage and resource extraction, the model incorporates a dynamic optimisation approach (using

Hamiltonian functions). For representing the production and demand of natural gas, COLUMBUS uses an

inelastic demand and a piecewise-linear supply function in the basic version of the model. Both can be

changed easily though, e.g. to a Golombek style production function. As COLUMBUS is a MCP model,

it can be extended to allow for the simulation of strategic behaviour of different players in the global gas

market, e.g. gas producers. Market power on the demand side may be analysed as well.

2. The Model

In the paper at hand we focus on the model’s basic mathematical structure – some details are left out,

and the paper does not deal with any kind of data preparation at all.

The spatial structure model is formulated as a directed graph consisting of a set N of vertices and a set

A ⊂ N × N of edges. The set of vertices can be subdivided into sources and sinks, where gas production

facilities are modeled as sources and demand regions as sinks, for example. An overview of all sets, decision

variables and parameters can be found in Table 1.
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Table 1: Model sets, variables and parameters

Sets
n ∈ N all model nodes
c ∈ C cost levels (steps of piecewise linear supply function)
t ∈ T months
y ∈ Y years
p ∈ P ∈ N producer / production regions
e ∈ E ∈ N exporter / trader
d ∈ D ∈ N final customer / demand regions
r ∈ R ∈ N regasifiers
l ∈ L ∈ N liquefiers
s ∈ S ∈ N storage operators
Primal Variables
prp,c,t produced gas volumes
fle,n,n1,t physical gas flows
tre,d,t traded gas volumes
sts,t gas stock in storage
sis,t injected gas volumes
sds,t depleted gas volumes
drp,c,y depleted resources
ipp,c,y annual investment into production capacity
itn,n1,y annual investment into pipeline transport capacity
iss,y annual investment into storage capacity
ilngy annual investment into LNG transport capacity
irr,y annual investment into regasification capacity
ill,y annual investment into liquefaction capacity
Dual Variables
λe,n,t marginal costs of physical gas supply by exporter e to node n in time period t
σs,t (intertemporal) marginal costs of storage injection
αp,c,y marginal value of resources in node n at cost level c in year y
βd,t marginal costs / price in node n in time period t
µp,c,t marginal benefit of an additional unit of production capacity
φn,n1,t marginal benefit of an additional unit of pipeline capacity
εs,t marginal benefit of an additional unit of storage capacity
ρs,t marginal benefit of an additional unit of storage injection capacity
θs,t marginal benefit of an additional unit of storage depletion capacity
ιt marginal benefit of an additional unit of LNG transport capacity
γr,t marginal benefit of an additional unit of regasification capacity
ζl,t marginal benefit of an additional unit of liquefaction capacity
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Parameter
demd,t final customer’s demand for natural gas
capn,t/n,n1,t/n,c,t monthly infrastructure capacity
resn,c,y maximum resources
trcn,n1,t transport costs
prcn,c,t production costs
opcn,t operating costs
incn,y/n,n1,y/n,c,y investment costs
distn,n1 distance between node n and node n1 in km
LNGcap initial LNG capacity
speed speed of LNG tankers in km/h
cfs conversion factor used for storage inj. & depl. capacity
elt economic life time of an asset

The model’s time structure is represented by a set T ⊂ N of points in time (months). This time structure

is flexible and the user can customize it, which means any year (y) until 2050 can be simulated with up to

twelve month per year. We define Yt as Yt :=
{
y ∈ Y |

⌊
t−1
12

⌋
+ 1 > y

}
. Thus, the set Yt comprises all years,

i.e. elements of the set Y (modelled years), prior to the year associated with the actual month, i.e. element

t ∈ T . A small example shall help to clarify this:

Example 1. Let us assume that we would like to model the years 2010 to 2015, i.e. Y = {1, 2, 3, 4, 5, 6}, with
each year consisting of twelve month. Therefore, the set T would look like this T = {1, 2, ..., 12, 13, ...72}. Let us
now assume that we would like to take a closer look at January 2012 (t = 37), we get

⌊
37−1
12

⌋
+ 1 = 4 and thus

Y37 = {1, 2, 3}.

Similarly, we define sets Ty and T̄y. Thereby, Ty := {t ∈ T | (y − 1) ∗ 12 < t ∧ (y − 1 + elt) ∗ 12 ≥ t},
where elt is defined as the economic lifetime. Thus, the set Ty comprises the months over the economic

life time (e.g. 20 years) of an asset when the investment has been made in year y. T̄y is defined as

T̄y := {t ∈ T | (y − 1) ∗ 12 ≥ t}. Hence, T̄y comprises the months of the years previous to the actual year y.

Finally, we define sets T (y) and Y (t), where Y (t) :=
{
y ∈ Y |

⌊
t−1
12

⌋
+ 1 = y

}
and

T (y) := {t ∈ T | (y − 1) ∗ 12 < t ∧ y ∗ 12 ≥ t}. Hence, the set Y (t) comprises the year which is associated

with month t and the set T (y) comprises the months t of year y. Again, a small example shall help to clarify

this:

Example 2. Let us assume that we would like to model the years 2010 to 2020, i.e. Y = {1, 2, 3, .., 11}, with
each year consisting of twelve month. Therefore, the set T would look like this T = {1, 2, ..., 12, 13, ...132}. Let
us now assume that we would like to take a closer look at year 2018 (y = 9), we get 96 < t ≤ 108 and thus
T (9) = {97, 98, ..., 108}.

The remainder of this section is organised as follows: We develop the optimisation problems of the

different players modeled in COLUMBUS and the corresponding first-order optimality conditions for each

of the players. The first-order conditions combined with the market clearing conditions form the partial

equilibrium model.

The vector of variables in parentheses on the right-hand side of each constraint are the Lagrange mul-

tipliers used when developing the first-order conditions (Karush-Kuhn-Tucker (KKT) conditions). The

complementary slackness condition is indicated by the perpendicular sign ⊥, where 0 ≤ x⊥y ≥ 0⇔ xty = 0

for vectors x and y.
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2.1. The Exporter’s Problem

The exporter e ∈ E is here defined as a trading unit associated with one or more production regions

p ∈ Pe, i.e. they are vertically integrated. Thus, the exporter buys gas from the different production regions

and sells the gas (tre,d,t) on the wholesale markets of the demand nodes d ∈ D. Each exporter e maximises

its profits, i.e. revenues minus costs of supply, over the modelled time period t ∈ T and all demand regions

d. Exporters may behave as price takers in the market, but can alternatively be modeled as if they were

able to exercise market power.

The payoff function ΠeI(tre,d,t) is defined as1

max
tre,d,t

ΠeI(tre,d,t) =
∑
t∈T

∑
d∈D

(βe,d,t ∗ tre,d,t − λe,d,t ∗ tre,d,t) (1)

where tre,d,t is the corresponding decision vector of e and λe,d,t corresponds to the exporter’s costs of

physical gas delivery to demand node d which is an endogenous variable (see equations 34 and 36). The

feasible region of tre,d,t is restricted by the non-negativity constraints tre,d,t ≥ 0. The first-order condition

of the exporter’s optimisation problem is thus defined by the first partial derivative of the Lagrangian Le

with respect to the decision variable tre,d,t:

∂LeI

∂tre,d,t
= −βp,t + λe,d,t ≥ 0 ⊥ tre,d,t ≥ 0 ∀e, d, t. (2)

In reality, if an exporter sells natural gas on a wholesale market with physical delivery he also faces the

decision of how to minimise transport costs by choosing the cost-minimal transport gas flows fle,n,n1,t. In

COLUMBUS this is modeled by a separate optimisation problem of the following form:

max
fle,n,n1,t

ΠeII(fle,n,n1,t) =
∑
t∈T

(λe,n1,t − λe,n,t − trcn,n1,t − opcn,t) ∗ fle,n,n1,t (3)

where opcn,t is defined as the operating costs at node n in month t and trcn,n1,t as the cost associated

with transporting gas from node n to node n1. Therefore, if n is a regasification node [r(n)], opcn,t would

reflect the costs of regasifying a unit of natural gas. If r(n) then n1 has to be a liquefaction node, thus

trcn,n1,t would be the short-run marginal LNG transport costs from node n to node n1. The optimisation

problem is subject to some physical transport constraints:

capn,n1,t +
∑
y∈Yt

itn,n1,y −
∑
e∈E

fle,n,n1,t ≥ 0 ∀n, n1, t (φn,n1,t). (4)

Thus, the sum over all transport flows (decided on by the traders) through the pipeline between node n

and n1 has to be lower than the respective pipeline capacity capn,n1,t and all past investments in additional

capacity.

capl,t +
∑
y∈Yt

ill,y −
∑
e∈E

∑
n∈N

fle,n,l,t ≥ 0 ∀l, t (ζl,t). (5)

1In order to keep the formulae as simple as possible no discount factor is included in the following.
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Along the lines of equation 4, this equation states that the sum over all transport flows (decided on by

the traders) through the liquefaction terminal, i.e. all natural gas that is liquefied, has to be lower than the

respective liquefaction capacity. The same holds true for the restriction of gas volumes which are regasified

and then transported to a demand node d in month t

capr,t +
∑
y∈Yt

irr,y −
∑
e∈E

∑
d∈D

fle,r,d,t ≥ 0 ∀r, t (γr,t). (6)

Finally, we also have to account for a limitation of available LNG tankers. Hence, the sum of all gas

volumes transported between a liquefaction terminal l and a regasification terminal r in month t is restricted

by the available LNG transport capacity.LNGcap+
∑
y∈Yt

ilngy

 ∗ 8760/12 ∗ speed−
∑
e∈E

∑
l∈L

∑
r∈R

2 ∗ (fle,l,r,t ∗ distn,n1) ≥ 0 ∀t (ιt) (7)

where speed is defined as the average speed of a LNG tanker (km/h), distn,n1 as the distance in km

between node n and node n1 and LNGcap as the number of existing LNG tankers times their average size in

the initial model year. By using equation 7, we take into account that each LNG tanker which delivers gas

to a regasification terminal has to drive back to a liquefaction terminal in order to load new LNG volumes.

Thereby, we simplify by assuming that each imaginary LNG tanker drives back to the liquefaction terminal

from where it started.

Taking the first partial derivative of the respective Lagrangian  LeII with respect to fle,n,n1,t results in:

∂LeII

∂fle,n,n1,t
= −λe,n1,t + λe,n,t + trcn,n1,t + opcn,t

+ φn,n1,t + ζl,t + γr,t

+ ιt ∗ 2 ∗ distl,r ≥ 0 ⊥ fle,n,n1,t ≥ 0 ∀e, n, n1, t. (8)

Thus, the optimisation problem defined by equations 3 to 7 may also be interpreted as a cost minimisation

problem assuming a benevolent dictator. Therefore, the first-order condition above would be the same in a

perfectly competitive transport market, since there will be gas flows between two nodes n and n1 until the

absolute difference of the dual variables associated with the physical market clearing constraint (equation

34) of the two nodes (λe,n1,t − λe,n,t) equals the costs of transporting gas from node n to node n1. Hence,

λe,n,t can be interpreted as the exporter’s marginal costs of supplying natural gas (including production

costs λe,p,t) to node n as it has been done in equation 1.

2.2. The Producer’s Problem

Each producer p ∈ P is assumed to operate a single production region. The producers earn revenues

from selling gas from its production region to the associated exporter. Each producer maximises its profits,

i.e. revenues minus costs of production prcp,c,t and costs of investment incp,c,y into additional production

capacities. Producers behave as price takers in the market.
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The producer’s payoff function Πp(prp,c,t, ipp,c,y) is defined as

max
prp,c,t
ipp,c,y

Πp(prp,c,t, ipp,c,y) =
∑
t∈T

∑
c∈C

(λe,p,t ∗ prp,c,t − prcp,c,t ∗ prp,c,t)

+
∑
y∈Y

∑
c∈C

(incp,c,y ∗ ipp,c,y) (9)

where prp,c,t and ipp,c,y are the corresponding decision vectors of p. The set of feasible solutions for

prp,c,t is restricted by the non-negativity constraints prp,c,t ≥ 0 and by a constraint on maximum production

capacities:

capp,c,t +
∑
y∈Yt

ipp,c,y − prp,c,t ≥ 0 ∀p, c, t (µp,c,t) (10)

where ipp,c,y is the annual investment in additional monthly production capacities. Finally, prp,c,t is

restricted by a resource constraint:

resp,c,y − drp,c,y ≥ 0 ∀p, c, y (αp,c,y) (11)

where drp,c,y represents the sum over the monthly natural gas production in the actual year y and the

years prior to the actual year. Since drp,c,y−1 =
∑

t∈T̄y
prp,c,t this can be rewritten as:

drp,c,y = drp,c,y−1 +
∑

t∈T (y)

prp,c,t. (12)

Using equation 12 we can reformulate the resource constraint (equation 11):

resp,c,y − drp,c,y−1 −
∑

t∈T (y)

prp,c,t ≥ 0 ∀p, c, y (αp,c,y). (13)

Due to the recourse definition of the resource constraint we have to maximise a Hamiltonian function

Hp with prp,c,t being the control variable. Therefore, the first-order conditions of the producer’s problem

consists of constraints 10 and 13 as well as the following partial derivatives of the Hamiltonian function:

∂Hp

∂prp,c,t
= −λe,p,t + prcp,c,t +

∑
y∈Y (t)

αp,c,y + µp,c,t ≥ 0 ⊥ prp,c,t ≥ 0 ∀p, c, t (14)

− ∂Hp

∂drp,c,y
= α̇p,c,y = αp,c,y+1 − αp,c,y ≤ 0 ⊥ drp,c,y ≥ 0 ∀p, c, y (15)

∂Hp

∂ipp,c,y
= incp,y −

∑
t∈Ty

µp,c,t ≥ 0 ⊥ ipp,c,y ≥ 0 ∀p, c, y. (16)

Thereby, the first-partial derivative of Hp with respect to ipp,c,y gives us the optimality condition for invest-

ments in additional production infrastructure. Hence, the producers should invest into additional production

capacities as long as the marginal value of additional production capacity (µp,c,t) summed over the economic

life time of production facilities is at least as large as the investment costs.
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2.3. The Transmission System Operator’s Problem

The Transmission System Operator (TSO) is modelled as a player in the natural gas market which is

subject to regulation. Each pipeline (n, n1) ∈ A is operated by one TSO. As also described in Gabriel et al.

(2005) as well as Egging et al. (2010) the TSO allocates pipeline capacity to players like the exporter and

physically reinforces the flows. Price regulation is assumed. Thus, revenues of the TSO are determined

by the short-run marginal transport costs trcn,n1,t (exogenous component) and the congestion rent φn,n1,t.

The TSO may also invest into additional pipeline capacity itn,n1,y. Hence, costs of the TSO are short-

run marginal transport costs and investment costs. Since short-run marginal costs cancel out, the pay-off

function of the TSOs looks the following:

max
itn,n1,y

ΠTSO(itn,n1,y) =
∑
t∈T

φn,n1,t −
∑
y∈Y

(incn,n1,y ∗ itn,n1,y). (17)

Thereby, the congestion rent is determined by the pipeline capacity restriction (equation 4). Thus, the

TSO’s optimisation problem is defined by the partial derivative of the Lagrangian LTSO with respect to

itn,n1,y:

∂LTSO

∂itn,n1,y
= incn,n1,y −

∑
t∈Ty

φn,n1,t ≥ 0 ⊥ itn,n1,y ≥ 0 ∀n, n1, y. (18)

2.4. The Liquefier’s problem

Liquefiers l ∈ L receive natural gas from exporters e and liquefy it. The resulting LNG is then send

downstream to the regasifiers r ∈ R using LNG tankers. Liquefiers allocate liquefaction capacities to the

traders. In return for liquefying natural gas they receive the sum of short-run variable liquefaction costs

opcl,t and the congestion rent ζn,t. Since, we assume the global LNG market, including the markets for

liquefying and regasifying natural gas, to be perfectly competitive, this sum equals long-run marginal costs.

Therefore, the liquefiers maximise the profit function Πl(ill,y)2:

max
ill,y

Πl(ill,y) =
∑
t∈T

ζl,t −
∑
y∈Y

(incl,y ∗ ill,y). (19)

Thereby, the congestion rent is determined by the liquefaction capacity restriction (equation 5). Thus,

similar to the TSO the liquefier’s optimisation problem is defined by the partial derivative of the Lagrangian

Ll with respect to ill,y:

∂Ll

∂ill,y
= incl,y −

∑
t∈Ty

ζl,t ≥ 0 ⊥ ill,y ≥ 0 ∀l, y. (20)

2.5. The Regasifier’s Problem

Regasifiers r receive LNG transported by LNG tankers and regasify it. The natural gas is then trans-

ported to a demand node by the TSO of the respective pipeline. Hence, the optimisation problem is similar

2By analogy with the TSO’s optimisation problem the short-run marginal costs, here opcl,t, cancel out, thus are not included
in equation 19.
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to the liquifier’s. Therefore, the profit function of the regasifier Πr(irr,y) is defined as:

max
irr,y

Πr(irr,y) =
∑
t∈T

γr,t −
∑
y∈Y

(incr,y ∗ irr,y). (21)

Thereby, the congestion rent γr,t is determined by the regasification capacity constraint (equation 6).

Hence, the regasifier’s optimisation problem is defined by the partial derivative of the Lagrangian Lr with

respect to irr,y:
∂Lr

∂irr,y
= incr,y −

∑
t∈Ty

γr,t ≥ 0 ⊥ irr,y ≥ 0 ∀r, y. (22)

2.6. The LNG Problem

The approach to modelling the LNG market slightly deviates from the other optimisation problem, since

no specific players are modelled. Instead, we assume one virtual investor who may invest in LNG transport

capacities, i.e. LNG tankers. Similar to other investments in transport infrastructure the investor behaves

perfectly competitive, thus investments into additional LNG tanker capacity take place until marginal invest-

ment costs equal marginal benefits. Therefore, the optimisation problem of investments in LNG transport

capacities is defined as:

max
ilngy

ΠLNG(ilngy) =
∑
t∈T

ιt −
∑
y∈Y

(incy ∗ ilngy). (23)

Thereby, the congestion rent ιy is determined by the LNG capacity restriction (equation 7). Thus, the

optimisation problem of the investor in LNG tanker capacity is defined by the partial derivative of LLNG

with respect to ilngy:

∂LLNG

∂ilngy
= incy −

∑
t∈Ty

(ιt ∗ 8760/12 ∗ speed) ≥ 0 ⊥ ilngy ≥ 0 ∀y. (24)

2.7. The Storage Operator’s Problem

Each storage facility is operated by one storage operator s ∈ S. The storage facilities are assumed to be

located in the demand regions. The storage operator maximises its revenues by buying gas in months with

low prices and reselling it in months with high prices. Furthermore, each year she may invest in additional

monthly storage capacity (iss,y). Hence, equivalent to the producer’s problem each storage operator faces a

dynamic optimisation problem of the following form:

max
sis,t,sds,t

iss,y

Πs(sis,t, sds,t, iss,y) =
∑
t∈T

βd,t (sds,t − sis,t)

−
∑
y∈Y

(incs,y ∗ ips,y). (25)

Using injection sis,t as well as depletion sds,t in month t, we can define the motion of gas stock (sts,t),

i.e. the change in stored gas volumes:

ṡts,t = sts,t+1 − sts,t = sis,t − sds,t ∀s, t (σs,t) (26)
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Additionally, the maximisation problem of the storage operator is subject to some capacity constraints:

caps,t +
∑
y∈Yt

iss,y − sts,t ≥ 0 ∀s, t (εs,t) (27)

cfs ∗ (caps,t +
∑
y∈Yt

iss,y)− sis,t ≥ 0 ∀s, t (ρs,t) (28)

cfs ∗ (caps,t +
∑
y∈Yt

iss,y)− sds,t ≥ 0 ∀s, t (θs,t). (29)

Hence, we assume that storage capacity can be linearly transfered (by use of the parameter cfs) into the

restriction on maximum injection (sis,t) and depletion (sds,t). The constraints stated above as well as the

following derivatives of the Hamiltonian function Hs constitute the first-order conditions of the storage

operator’s optimisation problem:

∂Hs

∂sds,t
= −βd,t + σs,t + θs,t ≥ 0 ⊥ sds,t ≥ 0 ∀s, t (30)

∂Hs

∂sis,t
= −σs,t + βd,t + ρs,t ≥ 0 ⊥ sis,t ≥ 0 ∀s, t (31)

− ∂Hs

∂sts,t
= εs,t = σ̇s,t = σs,t+1 − σs,t ≤ 0 ⊥ sts,t ≤ 0 ∀s, t (32)

∂Hs

∂iss,y
= incs,y −

∑
t∈Ty

[εs,t + cfs,t ∗ (ρs,t + θs,t)] ≥ 0 ⊥ iss,y ≥ 0 ∀s, y. (33)

2.8. Market Clearing Conditions

The equilibrium problem comprises the first-order conditions derived from the different optimisation

problems discussed previously. In addition, we have to include two market clearing conditions:∑
c∈C

prp,c,t − tre,d,t +
∑

n1∈(n1,n)∈A

fle,n1,n,t −
∑

n1∈(n,n1)∈A

fle,n,n1,t = 0 ⊥ λe,n,t free ∀e, n, t. (34)

Equation 34 is a general market clearing condition which has to be fulfilled for each exporter e ∈ E and

every model node n ∈ Ne at which the trader is active. For example, if we consider a production node p(n),

market clearing condition 34 collapses to:∑
c∈C

prp,c,t −
∑

n1∈(p,n1)∈A

fle,p,n1,t = 0 ⊥ λe,p,t free ∀e, p, t. (35)

Thus, the gas volumes produced have to match the physically flows out of node p(n). A similar example

could be derived for every other subnode of N . For example, if we consider a demand node d(n), market

clearing condition 34 simplifies to∑
n1∈(n1,d)∈A

fle,n1,d,t − tre,d,t = 0 ⊥ λe,d,t free ∀e, d, t. (36)
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Hence, equation 34 also assures that the gas volumes, which exporter e sold at the wholesale market of

demand node d, are actually physically transported there.∑
e∈E

tre,d,t + sds,t − sis,t − demd,t = 0 ⊥ βd,t free ∀d, t. (37)

The last market clearing condition (equation 37) states that final customer’s demand for natural gas

(demd,t) and gas volumes injected (sis,t) into storage facility at node s(d) is met by the sum over all gas

volumes sold at the wholesale market by traders e and gas volumes depleted (sds,t) from storage facility

s. Thus, the dual associated with equation 37 (βd,t) represents the wholesale price in demand node d in

month t.

3. Summary

The paper at hand presents a mixed complementary program for simulating dispatch and investment

decisions in the global gas market. Earlier modelling approaches developed at EWI were consolidated and

refined. Among other things new developments implemented in the COLUMBUS model now allow to include

non-linear elements like elastic demand functions or Golombek-style production functions in the model and

to account for non-competitive behaviour of players in the global gas market as well as the intertemporal

optimisation of resource extraction or storage utilisation. Therefore, COLUMBUS allows for short-term

as well as long-term analyses using different assumptions about the market structure and thus the market

power of the various players in the global gas market.
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